skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Purnama, Anton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Al-Baali, Mehiddin; Purnama, Anton; Grandinetti, Lucio (Ed.)
    Second order, Newton-like algorithms exhibit convergence properties superior to gradient-based or derivative-free optimization algorithms. However, deriving and computing second order derivatives--needed for the Hessian-vector product in a Krylov iteration for the Newton step--often is not trivial. Second order adjoints provide a systematic and efficient tool to derive second derivative infor- mation. In this paper, we consider equality constrained optimization problems in an infinite-dimensional setting. We phrase the optimization problem in a general Banach space framework and derive second order sensitivities and second order adjoints in a rigorous and general way. We apply the developed framework to a partial differential equation-constrained optimization problem. 
    more » « less